
Let Variations



(define sumSquares
(let ([sq (lambda (x) (* x x))])

(lambda (lat)
(cond

[(null? lat) 0]
[else (+ (sq (car lat)) (sumSquares (cdr lat)))]))))

sumSquares is a recursive function that uses a let-block to 
define a non-recursive helper function sq.  

You can't create recursive functions within let bindings:



The following doesn't work:

(let ([f (lambda (x) (if (= x  0) 1 (* x (f (- x 1)))))])
(f 3))

This just gives you an error message saying f is unbound. 
It is easy to see why: the let expression evaluates its bindings in the 
current (top-level in this case) environment.  This is the environment 
for the closure bound to f.  When we evaluate the body of f in the 
extended environment (extended with a binding for x) we can't do the 
recursive call because f isn't defined in this extended environment.    



There is a second version of let that handles this:

(letrec (bindings) body)

works just like (let (bindings) body) only the binding expressions 
are evaluated in an environment that includes the binding 
symbols, so recursion works.  There is a requirement that it 
must be possible to evaluate the binding values without 
knowing the values of the binding variables.  This is not a 
problem, since we usually use a letrec expression to bind a 
recursive procedure to a symbol. The value of the procedure is 
a closure; we don't need the value of the symbol it is bound to  
until the procedure is called.



Here is another problem with let, and another variation to solve 
this problem:

The following code makes sense, but doesn't work:
(let ([x 3] [y x]) y)

If x is bound to 3 and y is bound to the value of x, y should also 
be bound to 3.  However, let evaluates all of its bindings in an 
environment that doesn't include the binding symbols, so we 
get an error on the second binding [y x].



Whether the expression  (letrec ([x 3] [y x]) y) works or not 
depends on the version of Scheme you are using and how it 
implements letrec.

That's not good.



let* solves this problem by taking the bindings one at a time:
(let* ([sym1 exp1][sym2 exp2] ...) body)

is equivalent to
(let ([sym1 exp1])

(let ([sym2 exp2])
....

body)))))

In other words, each binding is evaluated in an environment that 
includes all of the previous bindings.



(let* ([x 3][y x]) y)

is equivalent to

(let ([x  3] )
(let ([y x])

y))

which evaluates to 3.



Note that the let-expression is unnecessary.  Consider the 
following example:

(let ([x 3][y 4])
(+ x y))

This is completely equivalent to
( (lambda (x y) (+ x y)) 3 4)

To evaluate either expression we create a new environment, 
which is the current environment extended to have bindings of 
x to 3 and y to 4, and evaluate the expression (+ x y) in this 
environment.



In fact, any let-expression
(let

([x1 exp1]
[x2  exp2]
[x3  exp3]

...
[xn expn])

body)

is equivalent to
((lambda (x1 x2 ... xn) body) exp1 exp2 ... expn)

When we write an interpreter for Scheme, one option will be to 
translate let expressions into the corresponding lambda 
expressions and use our interpreter for the latter.


